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Abstract
The thermal entanglement is investigated in a two-qubit Heisenberg XXZ system with
Dzyaloshinskii–Moriya (DM) interaction. It is shown that the entanglement can be efficiently
controlled by the DM interaction parameter and coupling coefficient Jz . Dx (the x-component
parameter of the DM interaction) has a more remarkable influence on the entanglement and the
critical temperature than Dz (the z-component parameter of the DM interaction). Thus, by
changing the DM interaction direction, we can get a more efficient control parameter to increase
the entanglement and the critical temperature.

1. Introduction

Entanglement has been extensively studied in recent years
because it has the fascinating nonclassical nature of quantum
mechanics, and it plays a key role in quantum information
processing [1, 2]. The quantum entanglement in solid
state systems such as spin chains is an important emerging
field [3–8]: spin chains are natural candidates for the
realization of entanglement and spin has been researched in
many other systems, such as superconductors [9, 10], quantum
dots [11–13] and trapped ions [14, 15].

In order to characterize qualitatively and quantitatively
the entanglement properties of condensed matter systems and
apply them in quantum information, the thermal entanglement
qualities in the Heisenberg model have been extensively
studied [7, 8, 16, 17] and many schemes of teleportation
via thermal entangled states have been reported [18–21]. In
condensed matter systems, the Heisenberg chains have also
been used to construct a quantum computer [22], perform
quantum computation [23–25], etc.

In those studies the spin–spin interaction was considered,
but the spin–orbit coupling was rarely considered. In
particular, the influences of the x-component DM interaction

3 Author to whom any correspondence should be addressed.

parameter on the entanglement and the critical temperature
have never been reported. In this paper we investigate the
influence of the Dzyaloshinskii–Moriya interaction parameter
(arising from the spin–orbit coupling) and coupling coefficient
Jz on the entanglement of a two-qubit anisotropic Heisenberg
XXZ spin chain. We show that the DM interaction
parameter and the coupling coefficient Jz are both efficient
control parameters of entanglement. Increasing them can
enhance the entanglement or slow down the decrease of
the entanglement. In addition, by analyzing how we know
that different component parameters of the DM interaction
have different influences on the entanglement and the critical
temperature Tc, the parameter Dx (x-component parameter
of the DM interaction) has a more remarkable influence than
the parameter Dz (the z-component parameter of the DM
interaction). So a more efficient control parameter can be
obtained by changing the DM interaction direction.

Our paper is organized as follows. In section 2,
we introduce the Hamiltonian of the two-qubit anisotropic
Heisenberg XXZ chain with the z-component parameter of the
DM interaction, calculate the concurrence of this system and
analyze the influence of parameters on the entanglement in
the ground state and thermal state. In section 3, we similarly
analyze the model of the two-qubit Heisenberg XXZ chain with
the x-component parameter of the DM interaction. Then we
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compare the influences of the two component parameters of
the DM interaction on the entanglement in section 4. Finally,
in section 5 a discussion concludes the paper.

2. XXZ Heisenberg model with DM interaction
parameter Dz

The Hamiltonian H for a two-qubit anisotropic Heisenberg
XXZ chain with DM interaction parameter Dz is

H = Jσ x
1 σ x

2 + Jσ
y

1 σ
y

2 + Jzσ
z
1 σ z

2 + Dz(σ
x
1 σ

y
2 − σ

y
1 σ x

2 ), (1)

where J and Jz are the real coupling coefficients, Dz is the
z-component parameter of the DM interaction and σ i (i =
x, y, z) are Pauli matrices. The coupling constants J > 0 and
Jz > 0 correspond to the antiferromagnetic case, while J < 0
and Jz < 0 correspond to the ferromagnetic case. This model
is reduced to the isotropic XX model when Jz = 0 and to the
isotropic XXX model when Jz = J . Parameters J , Jz and Dz

are dimensionless.
In the standard basis {|00〉, |01〉, |10〉, |11〉}, the Hamilto-

nian (1) can be expressed as

H =
⎛
⎜⎝

Jz 0 0 0
0 −Jz 2J + 2iDz 0
0 2J − 2iDz −Jz 0
0 0 0 Jz

⎞
⎟⎠ . (2)

By a straightforward calculation we can obtain H eigenstates:

|�1〉 = |00〉, (3a)

|�2〉 = |11〉, (3b)

|�3〉 = 1√
2
(eiθ |01〉 + |10〉), (3c)

|�4〉 = 1√
2
(eiθ |01〉 − |10〉), (3d)

with corresponding eigenvalues:

E1 = Jz, (4a)

E2 = Jz, (4b)

E3 = −Jz + 2w, (4c)

E4 = −Jz − 2w, (4d)

where w = √
J 2 + D2

z and θ = arctan(
Dz

J ).
The state of a spin chain system at thermal equilibrium is

ρ(T ) = exp(−βH )

Z , where Z = tr[exp(−β H )] is the partition
function of the system, H is the system Hamiltonian and
β = 1

KBT , with T temperature and KB the Boltzmann constant
which we take equal to 1 for simplicity. Here ρ(T ) represents a
thermal state, so the entanglement in the thermal state is called
thermal entanglement [26]. In the above standard basis, the
state of this system at thermal equilibrium can be expressed as

ρ(T ) = 1

Z

⎛
⎜⎝

e−β Jz 0 0 0
0 u veiθ 0
0 ve−iθ u 0
0 0 0 e−β Jz

⎞
⎟⎠ , (5)

where u = 1
2 (1 + e4βw)eβ(Jz−2w), v = 1

2 (1 − e4βw)eβ(Jz−2w)

and Z = 2e−β Jz [1 + e2β Jz cosh(2βw)].
In what follows, we consider the concurrence to quantify

the amount of entanglement of the above two-qubit system
state ρ(T ). The concurrence [27, 28] is defined as C(ρ(T )) =
max[2 max(λi ) − �iλi , 0], where λi (i = 1, 2, 3, 4) are the
square roots of the eigenvalues of the matrix R = ρSρ∗S, in
which S = σ

y
1

⊗
σ

y
2 , ρ is the density matrix of equation (5)

and the asterisk denotes the complex conjugate. After some
straightforward calculation, we get

λ1 = 1

Z
e−β Jz , (6a)

λ2 = 1

Z
e−β Jz , (6b)

λ3 = 1

Z
eβ(Jz−2w), (6c)

λ4 = 1

Z
eβ(Jz+2w), (6d)

thus the corresponding concurrence can be expressed as

C(ρ(T )) = max

{
eβ Jz

Z

(|e2βw − e−2β Jz |

− e−2βw − e−2β Jz
)
, 0

}
. (7)

The concurrence is invariant under the substitutions J → −J
and Dz → −Dz , so we can restrict J > 0 and Dz > 0
without loss of generality. The concurrence ranges from 0 to
1, C(ρ(T )) = 0 and C(ρ(T )) = 1 indicate the vanishing
entanglement and the maximal entanglement, respectively. We
can see from equation (7) that the entanglement C(ρ(T )) =
eβ Jz

Z (e2βw − e−2β Jz − e−2βw − e−2β Jz) if Jz > −w, and
C(ρ(T )) = 0 if Jz < −w. Here we analyze the Jz > −w

case.
When T = 0, the system is in its ground state. It is easy

to find that the ground-state energy is equal to

E4 = −Jz − 2w, if Jz > −w, (8a)

E1 = E2 = Jz, if Jz < −w. (8b)

Thus, the ground state is the disentangled state |�1〉 or |�2〉
when Jz < −w, and the ground state is the entangled state
|�4〉 when Jz > −w. The entanglement of the ground state
|�4〉 is the maximal entanglement with C(|�4〉) = 1.

As the temperature increases the thermal fluctuation
will be introduced into the system. Thus the entanglement
will be changed due to the mix of the ground states and
the excited states. When the temperature is higher than
a critical temperature the entanglement is zero. Quantum
phase transition happens at the critical temperature Tc. From
equation (7), we obtain the following critical temperature
equation:

e
2Jz
Tc sinh

(
2w

Tc

)
= 1. (9)

To see the change of the entanglement in detail, we
analyze the concurrence of equation (7). By fixing some
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Figure 1. The concurrence is plotted versus T and Dz where the
coupling constants J = 1 and Jz = 0.2.

Figure 2. The concurrence is plotted as a function of the temperature
T for different Dz . Here J = 1 and Jz = 0.2.

parameters we can know the roles of the other parameters
and the variation of the entanglement. In figure 1, the
thermal entanglement is plotted versus T and Dz where
the coupling constants J = 1 and Jz = 0.2. From
the figure, it is obvious that the increased temperature T
can decrease the entanglement. The reason is the mixing
of the maximally entangled state with other states. In
addition, it is easy to see that the entanglement will increase
as the DM interaction parameter Dz increases. Figure 2
demonstrates the concurrence versus temperature for different
DM coupling parameters Dz when J = 1 and Jz =
0.2. It shows that the concurrence will decrease with
increasing temperature T and increase with increasing Dz for
a certain temperature. The critical temperature Tc determined
by equation (9) is dependent on Dz . Increasing Dz can
increase the critical temperature above which the entanglement
vanishes. Similarly, figure 3 shows the concurrence versus
temperature for different anisotropic coupling parameters Jz

when J = 1 and Dz = 1. We can see that the entanglement
decreases with the increase of temperature, and by increasing
Jz , the critical temperature is increased and the entanglement
is enhanced for a certain temperature.

So the DM interaction parameter Dz and anisotropic
coupling coefficient Jz are both efficient control parameters
of entanglement. By increasing them, we can enhance the

Figure 3. The concurrence versus T for different Jz in the system
with z-component parameter Dz . Here J = 1 and Dz = 1.

entanglement or increase the critical temperature to slow down
the decrease of the entanglement.

3. XXZ Heisenberg model with DM interaction
parameter Dx

Here we consider the case of the two-qubit anisotropic
Heisenberg XXZ chain with DM interaction parameter Dx .
The Hamiltonian is

H ′ = Jσ x
1 σ x

2 + Jσ
y

1 σ
y

2 + Jzσ
z
1 σ z

2 + Dx(σ
y

1 σ z
2 −σ z

1 σ
y

2 ), (10)

where Dx is the x-component parameter of the DM interaction,
and J , Jz and σ i (i = x, y, z) are the same as in section 2.
Parameters Dx , J and Jz are dimensionless.

In the standard basis {|00〉, |01〉, |10〉, |11〉}, the Hamilto-
nian (10) can be rewritten as

H ′ =
⎛
⎜⎝

Jz iDx −iDx 0
−iDx −Jz 2J iDx

iDx 2J −Jz −iDx

0 −iDx iDx Jz

⎞
⎟⎠ . (11)

After a straightforward calculation we obtain H ′ eigenstates:

|	1〉 = 1√
2
(|00〉 + |11〉), (12a)

|	2〉 = 1√
2
(|01〉 + |10〉), (12b)

|	3〉 = 1√
2
(−i sin φ|00〉+cos φ|01〉−cos φ|10〉+i sin φ|11〉),

(12c)

|	4〉 = 1√
2
(−i sin ϕ|00〉+cos ϕ|01〉−cos ϕ|10〉+i sin ϕ|11〉),

(12d)
with corresponding eigenvalues

E ′
1 = Jz, (13a)

E ′
2 = 2J − Jz, (13b)

E ′
3 = −J + w′, (13c)
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Figure 4. The concurrence is plotted versus T and Dx where the
coupling constants J = 1 and Jz = 0.2.

E ′
4 = −J − w′, (13d)

where φ = arctan( 2Dx
J+Jz−w′ ), ϕ = arctan( 2Dx

J+Jz+w′ ) and w′ =√
(J + Jz)2 + 4D2

x .
For convenience of analysis, we assume Jz � J in this

section (for the case Jz > J we can get some similar results).
Here, it is easy to see that the system’s ground-state energy is
E ′

4 = −J−w′. Thus the corresponding ground state |	4〉 is the
maximally entangled state with C(|	4〉) = 1. In fact the four
eigenstates in equation (12) are all maximally entangled states.
This phenomenon indicates that the ground states have more
entanglement in this system than the system of equation (1).

At thermal equilibrium the density matrix of this two-qubit
spin chain system has the following form:

ρ ′(T ) = exp(−β H ′)
Z ′ = 1

2Z ′

⎛
⎜⎝

μ+ −ξ ξ μ−
ξ ν+ ν− −ξ

−ξ ν− ν+ ξ

μ− ξ −ξ μ+

⎞
⎟⎠ ,

(14)
where Z ′ = 2e−β J cosh[β(J − Jz)] + 2eβ J cosh(βw′) is the
partition function of the system, H ′ is the system Hamiltonian
and β = 1

KBT with the Boltzmann constant KB ≡ 1.

μ± = e−β Jz ± (eβ(J−w′) sin2 φ + eβ(J+w′) sin2 ϕ), ν± =
eβ(Jz−2J ) ± (eβ(J−w′) cos2 φ + eβ(J+w′) cos2 ϕ), and ξ =
ieβ(J−w′) sin φ cos φ + ieβ(J+w′) sin ϕ cos ϕ.

In what follows, we calculate the square roots of the
eigenvalues of the matrix R′ = ρ ′Sρ ′∗S, where ρ ′∗ is the
complex conjugate of ρ ′ and S = σ

y
1

⊗
σ

y
2 . The square roots

of the eigenvalues of the matrix R′ are

λ′
1 = 1

Z ′ e
β(Jz−2J ), (15a)

λ′
2 = 1

Z ′ e
−β Jz , (15b)

λ′
3 = 1

Z ′ e
β J

[
cosh(βw′) +

√
cosh2(βw′) − 1

]
, (15c)

λ′
4 = 1

Z ′ e
β J

[
cosh(βw′) −

√
cosh2(βw′) − 1

]
. (15d)

Figure 5. The concurrence versus T for different Jz in the system
with x-component parameter Dx . Here J = 1 and Dx = 1.

According to the methods in [27, 28], when Jz � J we obtain
the corresponding concurrence:

C(ρ ′(T ))

= max

{
1

Z ′

[∣∣∣∣eβ J

(
cosh(βw′) +

√
cosh2(βw′) − 1

)

− e−β Jz

∣∣∣∣ − eβ J

(
cosh(βw′) −

√
cosh2(βw′) − 1

)

− eβ(Jz−2J )

]
, 0

}
. (16)

To analyze the role of a parameter and the variation
of the entanglement, we restrict the parameters Dx > 0,
Jz > 0 and J > 0. In figure 4, the concurrence is plotted
versus T and Dx when the coupling constants J = 1 and
Jz = 0.2. It is evident that increasing temperature will
decrease the entanglement, and increasing Dx will enhance
the entanglement and increase the critical temperature T ′

c ,
which is determined by equation (16). Figure 5 demonstrates
the concurrence versus T for different Jz with x-component
parameter Dx = 1 and J = 1. It is easy to find that
increasing Jz can increase the critical temperature and enhance
the entanglement for a certain temperature. So Dx and Jz are
both efficient control parameters of entanglement, too.

4. The comparison between the two DM interaction
component parameters

From sections 2 and 3, we know that the x-component
parameter Dx and the z-component parameter Dz of the DM
interaction have similar qualities. They are both efficient
control parameters of entanglement, so increasing them can
enhance the entanglement or increase the critical temperature
to slow down the decrease of entanglement.

In this section, we mainly analyze the differences between
the x-component parameter and z-component parameter. We
note that there is s smaller disentanglement region in figure 4
than in figure 1, where J = 1 and Jz = 0.2, and the
temperature and the spin–orbit coupling parameter have the
same range. We also see that increasing the x-component
parameter Dx can make the entanglement increase more
rapidly. For example, when T = 6 the concurrence
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Figure 6. The concurrence is plotted as a function of the temperature
T for Dz = 2 and Dx = 2. Here J = 1 and Jz = 0.2.

increases more rapidly in figure 4 than in figure 1. These
phenomena show that the x-component parameter Dx has a
more remarkable influence than the z-component parameter
Dz . In figure 6, the concurrence is plotted as a function of
the temperature T for Dz = 2 and Dx = 2 with J = 1 and
Jz = 0.2. It is easy to see that, for the same Dx and Dz , the
x-component parameter Dx has a higher critical temperature
and more entanglement for a certain temperature than the z-
component parameter Dz . We show directly the differences
between different component parameters of the DM interaction
in figure 6. So for different directions of DM interaction, we
can increase the entanglement and the critical temperature with
different efficiencies.

5. Discussion

The thermal entanglement of a two-qubit Heisenberg XXZ
system with DM interaction is investigated. The DM
interaction parameter and coupling coefficient Jz are efficient
control parameters of the entanglement. By increasing the
parameters, we can enhance the entanglement or increase
the critical temperature to slow down the decrease of the
entanglement. In addition, we have also investigated the
differences between the x-component parameter Dx and the z-
component parameter Dz of the DM interaction. Entanglement
can be increased more rapidly by increasing Dx more than Dz .
When Dx and Dz have the same value, Dx has a higher critical
temperature Tc than Dz . Thus, by changing the direction of the
DM interaction, we can get a more efficient control parameter
to increase the entanglement and the critical temperature.
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